Jika AC = B dan C^-1 invers matriks C, determinan dari matriks C^-1 adalah
Pertanyaan
1 Jawaban
-
1. Jawaban arsetpopeye
Diketahui matriks A = [tex]\left[\begin{array}{cc}4&2\\3&-4\end{array}\right][/tex] dan matriks B = [tex]\left[\begin{array}{cc}5&-3\\2&1\end{array}\right][/tex]. Jika AC = B dan C⁻¹ invers matriks C, determinan dari matriks C⁻¹ adalah ...
A. -2 D. 2
B. -1 E. 3
C. 1
Jawaban
Pendahuluan
Jika A = [tex]\left[\begin{array}{cc}a&b\\c&d\end{array}\right][/tex]
Determinan A = |A| = ad – bc
Invers matriks A = A⁻¹ = [tex]\frac{1}{|A|}\left[\begin{array}{cc}d&-b\\-c&a\end{array}\right][/tex]
Sifat determinan matriks
1. |A . B| = |A| . |B|
2. |A⁻¹| =
3. |Aᵗ| = |A|
Sifat Invers matriks
1. (A⁻¹)⁻¹ = A
2. (AB)⁻¹ = B⁻¹ . A⁻¹
3. A . A⁻¹ = A⁻¹ . A = I, dengan I = matriks identitas
4. AX = B ⇒ X = A⁻¹B
5. XA = B ⇒ X = BA⁻¹
Pembahasan
A = [tex]\left[\begin{array}{cc}4&2\\3&-4\end{array}\right][/tex]
|A| = 4(– 4) – 2(3) = – 16 – 6 = – 22
B = [tex]\left[\begin{array}{cc}5&-3\\2&1\end{array}\right][/tex]
|B| = 5(1) – (–3)(2) = 5 + 6 = 11
Cara 1
AC = B
C = A⁻¹.B
C⁻¹ = (A⁻¹.B)⁻¹
C⁻¹ = B⁻¹ . A
[tex]C^{-1}=\frac{1}{11} \left[\begin{array}{cc}1&3\\-2&5\end{array}\right]\left[\begin{array}{cc}4&2\\3&-4\end{array}\right]\\ \\ C^{-1}=\frac{1}{11} \left[\begin{array}{cc}4+9&2-12\\-8+15&-4-20\end{array}\right]\\ \\ C^{-1}=\frac{1}{11} \left[\begin{array}{cc}13&-10\\7&-24\end{array}\right]\\ \\ C^{-1}= \left[\begin{array}{cc}\frac{13}{11}&-\frac{10}{11}\\\frac{7}{11}&-\frac{24}{11}\end{array}\right][/tex]
[tex]|C^{-1}|=\frac{13}{11} .(-\frac{24}{11})-(-\frac{10}{11}).\frac{7}{11}\\ \\ |C^{-1}|=-\frac{312}{121} +\frac{70}{121}\\ \\ |C^{-1}|=-\frac{242}{121}\\ \\ |C^{-1}|=-2[/tex]
Cara 2
AC = B
|AC| = |B|
|A| . |C| = |B|
–22 . |C| = 11
|C| = [tex]\frac{11}{-22} =-\frac{1}{2}[/tex]
|C⁻¹| = [tex]-\frac{2}{1}[/tex] = –2
Jawaban A
Kesimpulan
Determinan dari matriks C⁻¹ adalah –2
Pelajari lebih lanjut
https://brainly.co.id/tugas/12724799
--------------------------------------------------
Detil Jawaban
Kelas : 11
Mapel : Matematika
Kategori : Matriks
Kode : 11.2.5
Kata Kunci : determinan matriks invers